

Department of Chemical Engineering and Chemistry

Future of energy storage: low-cost flow batteries that enable the green energy transition

Yohanes Antonius Hugo, MEA scientist & PhD candidate

Elestor BV & Eindhoven University of Technology

KIVI Symposium Electrochemical Energy Storage February 4, 2020

Green energy transition is not happening yet?!

Clean energy sources are abundantly available and the technologies have been developed

KIVI Symposium Electrochemical Energy Storage February 4, 2020

۲U/e

elestor

The cost of surplus electricity in Northern Germany

Source: Renewable energy curtailment: A case study on today's and tomorrow's congestion management, H. Schermeyer et al.

In 2015, about 3% of Germany green electricity was curtailed and it costs approx. 480 M€

KIVI Symposium Electrochemical Energy Storage February 4, 2020

The demand for storage in a changing world

- With more electricity generated by sun & wind and less fossil:
 - We will need to bridge longer periods of time
 - We need more Capacity [MWh] rather than more Power [MW]
 - The market: >100 times more storage is needed (from 4.67 to 500 TWh)
- Flow batteries can be designed with any MW/MWh combination and
 - in any location

Cost-effective storage system is the missing link in the energy transition

KIVI Symposium Electrochemical Energy Storage February 4, 2020

Flow battery working principle

Source: Pacific Northwest National Laboratory (PNNL) S&T

KIVI Symposium Electrochemical Energy Storage February 4, 2020

TU/e

- Power and Capacity are not coupled:
 - Membrane surface area \rightarrow Power [kW]
 - Active material volumes \rightarrow Capacity [kWh]
- As safe as conventional batteries, or even better
- Lifetime independent of 'Depth of Discharge'
- Fundamentally, no capacity degradation and no self-discharge
- Upgradable and serviceable

🕑 elestor

Hydrogen-bromine flow battery (HBFB)

High power system:

• High reaction rate

Low cost system:

• < €20/kWh reactive materials cost

elestor

- Abundant supply (<0.002% of global HBr reserves are sufficient for 500 TWh storage capacity)
- Active materials can be fully recycled, in cooperation with the largest bromine producer in the world
- Highly reactive bromine species
- No hydrogen compressor required

elestor

• I-V curve and losses contribution

KIVI Symposium Electrochemical Energy Storage February 4, 2020

ГU/е

• Polarization curve

ΓU/e

• Cycling profile

TU/e

• Long term testing – efficiency profile

TU/e

• Long term testing – cycling profile

TU/e

Elestor HBFB storage system model

• Designed storage system summary for minimum viable product

Parameter	Value	Unit
Nominal (dis.) power	500	kW
Storage time	10	h
Energy efficiency	78	%
System efficiency	70	%
System lifetime	10+10	year

/e

High performance – low cost HBFB is a promising technology to store surplus electricity

ГU/e

Membranes for HBFB technology

- Nafion[®] type membranes:
 - Polymer backbone
 - Functional groups (hydrophilic &

proton conductive)

- Performances:
 - Proton conductivity
 - Selectivity
 - Cost

Ce elestor

D. K. Kreuer, J. Membr. Sci. 185 (2001) 29–39.

Br⁻

ГU/е

Performance mapping of HBFB membranes

Short term impact of reinforcement

KIVI Symposium Electrochemical Energy Storage February 4, 2020

TU/e

Long term impact of reinforcement – Method

• High-frequency cycling accelerated lifetime test (ALT)

Long term impact of reinforcement – Results

a) Nafion[®]:

- Limiting current density: 850 mA/cm²
- Number of cycles: ±710

b) Reinforced Nafion[®]:

Limiting current density: 750 mA/cm²

elestor

• Number of cycles: \pm 4600

21

Long term impact of reinforcement – Results

KIVI Symposium Electrochemical Energy Storage February 4, 2020

TU/e

Failure mode analysis

TU/e

	Ν	lass ratio with	n C
Element	Native catalyst layer	Nafion [®]	Reinforced Nafion [®]
F	0.48	0.58	0.42
S	0.03	0.02	0.01
Pt	0.94	0.03	0.05

- Bromide species react with Pt particle \rightarrow soluble bromoplatinic acid (H₂PtBr₆)
- Bromoplatinic acid is dissolved and exits the catalyst layer

Proton exchange membrane determines system efficiency, durability and cost

ГU/e

Take home messages

- Storage is the missing link in the energy transition
- HBFB technology is promising
- Membranes determine the system efficiency, durability and cost

elestor

Company profile

- Founded in 2014 by Wiebrand Kout (CTO) MBI Guido Dalessi (CEO) in 2015
- International team of 20 FTEs (PhD/MSc/BSc/MLO)
- 2 PhD at the research group of Prof. Dr. Kitty Nijmeijer, TUe
- Member of 'FlowCamp' consortium (under Fraunhofer Institute)
- 1st financing: Dec 2015 (Dalessi, InnoEnergy, Enfuro)
- 2nd financing: Jul 2019 (Koolen Industries, InnoEnergy)

- 2016: Recognized with several national awards
- 2017: European IDTechEx Award, Berlin, for:

"Best Technical Development within Energy Storage"

(Juried by Fraunhofer, Universität Berlin, Toyota Motors Europe)

• 2019: Perl of the Region (received from The Economic Board)

Elestor expertise

- Deep tech know-how on:
 - Catalysts
 - Electrodes
 - Membranes
 - Electrolytes
 - Cell-stacks
 - Control & power electronics
 - System architecture
 - Compliancy

>90,000 R&D hours since June

2014

Ce elestor

TU/e

Thank you for your attention

Elestor BV Industriepark Kleefsewaard (IPKW) Westervoortsedijk 73, building BF 6827 AW Arnhem

info@elestor.nl

www.elestor.nl

JELESTOR_BV

Ce elestor

KIVI Symposium Electrochemical Energy Storage February 4, 2020

ГU/е